Existence of Maximal Elements and Equilibria in Linear Topological Spaces

نویسندگان

  • Nicholas C. YANNELIS
  • N. D. PRABHAKAR
چکیده

We present some mathematical theorems which are used to generalize previous results on the existence of maximal elements and of equilibrium. Our main theorem in this paper is a new existence proof for an equilibrium in an abstract economy, which is closely related to a previous result of Borglin-Keiding, and Shafer-Sonneschein, but allows for an i&nite number of commodities and a countably infinite number of agents.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cournot-Nash equilibria in continuum games with non-ordered preferences

In the usual framework of continuum games with externalities, we substantially generalize Cournot–Nash existence results [Balder, A unifying approach to existence of Nash equilibria, Int. J.Game Theory 24 (1995) 79–94; On the existence of Cournot–Nash equilibria in continuum games, J.Math. Econ. 32 (1999) 207–223; A unifying pair of Cournot–Nash equilibrium existence results, J. Econ. Theory 10...

متن کامل

Existence of Equilibria in Games with Arbitrary Strategy Spaces and Preferences: A Full Characterization∗

This paper studies the existence of Nash equilibria when strategy spaces are arbitrary topological spaces and preferences may be nontotal/nontransitive, discontinuous, nonconvex, or nonmonotonic. We define a single condition, recursive diagonal transfer continuity for aggregate payoffs or recursive weak transfer quasi-continuity for individuals’ preferences, which establishes the existence of N...

متن کامل

Existence of best proximity and fixed points in $G_p$-metric spaces

In this paper, we establish some best proximity point theorems using new proximal contractive mappings in asymmetric $G_{p}$-metric spaces. Our motive is to find an optimal approximate solution of a fixed point equation. We provide best proximity points for cyclic contractive mappings in $G_{p}$-metric spaces. As consequences of these results, we deduce fixed point results in $G_{p}$-metric spa...

متن کامل

THE UNIFORM BOUNDEDNESS PRINCIPLE IN FUZZIFYING TOPOLOGICAL LINEAR SPACES

The main purpose of this study is to discuss the uniform boundednessprinciple in fuzzifying topological linear spaces. At first theconcepts of uniformly boundedness principle and fuzzy equicontinuousfamily of linear operators are proposed, then the relations betweenfuzzy equicontinuous and uniformly bounded are studied, and with thehelp of net convergence, the characterization of fuzzyequiconti...

متن کامل

Some properties of continuous linear operators in topological vector PN-spaces

The notion of a probabilistic metric  space  corresponds to thesituations when we do not know exactly the  distance.  Probabilistic Metric space was  introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of  probabilistic normed space based on the definition of Menger [1]. In this note we study the PN spaces which are  topological vector spaces and the open mapping an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001